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1 Введение

В работе [6] впервые было показано замечательное соответствие,названное в честь ав-

торов работы–АГТ-гипотезой.В нём устанавливается равенство между целым набором

параметров двух теорий–четырёхмерной суперконформной теорией поля и двумерной

конформной теорией Лиувилля.В частности,имеет место равенство между функциями

Некрасова инстантонных сумм и конформным блоком в теории Лиувилля.Однако нас
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будет интересовать скорее способ доказательства данных соотнощений.В работе [10] был

предложен способ доказательства путём почленного сравнения и доказательства равен-

ства для разложения функций Некрасова и конформных блоков по некоторому пара-

метру.Для целей почленного доказательства для конформных блоков вводится форма-

лизм Доценко-Фатеева(см.[1]).Это представление позволяет записывать конформные бло-

ки,как некоторые интегралы по мере,которая зависит от теории,которую мы рассмат-

риваем.Подынтегральное же выражение зависит в целом от вида конформного блока и

размерности внешних примарных полей.Для наших же целей данный интеграл выгод-

но выразить через интегралы Сельберга–определённого вида матричную модель,которую

также можно назвать β-ансамбля(см.[10],(48)).

В доказательстве в работе [10] предложен метод разложения такого интеграла в ряд по

комбинациям интегралов по такой же мере от неких полиномов или их комбинаций.Такой

подход развит в работе [8],где конформный блок раскладывается в ряд по членам,каждый

из которых представляет собой произведение двух средних от так называемых обобщён-

ных полиномов Джека,по той же мере интеграла Сельберга.Для q−деформированного

случая,соответствующего 5d теории,вместо полиномов Джека задействуются полиномы

Макдональда(см.[2],[11]).Любопытна здесь также связь данного построения с теорией ин-

тегрируемых систем,в частности полиномы Макдональда являются собственными функ-

циями тригонометрической модели Рудженаарса-Шнейдера.Переход от четырёхмерной

теории к пятимерной осуществляется так называемой q−деформацией,вид которой приве-

дён в работе [11].В данной работе мы возвращаемся в четырёхмерную теорию,но несколь-

ко "необычным"образом.Мы исследуем также способ получения полиномиальных средних

от любых симметрических полиномов,а так как полиномы Макдональда,Джека,Шура и

другие раскладываются по базису симметрических полиномов,то это позволяет нам вы-

числять средние и от них.Таким образом задача отыскания интеграла по определённой

сложной мере сводится к решению системы линейных уравнений.Мы строим конструкцю

таких петлевых уравнений в нетривиальном h−пределе и проверяем её.Также мы иссле-
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дуем предел от средних полиномов Макдональда,и связываем его с теми же петлевыми

уравнениями.Некоторая часть работы посвящена начальному анализу рациональной мо-

дели Рудженаарса-Шнейдера,которая получается из тригонометрической модели при взя-

тии предела,в частности вопросу об отыскании собственных функций гамильтониана этой

модели.

2 Петлевые уравнения

2.1 Переход к пределу

Величины в 5d теории выражаются через величины 4d теории следующим образом [4]

(2.55):

(. . .)5d/3d = e−h(...)4d/2d (1)

При стремлении q к единице,а h к нулю мы и получаем 4d предел 5d теории.Параметры,которые

будут видоизменяться это q = eh,t = ehβ.Нам часто будет встречаться т.н. q-символы

Похгаммера:(a; q)n =
n−1∏
k=0

(1− aqk).В частности (a; q)∞ =
∞∏
k=0

(1− aqk).Покажем,как преоб-

разуются эти выражения при взятии предела.

Для этого нам будет достаточно 1-ого порядка разложения q = 1+h,а также определе-

ние по Эйлеру гамма-функции :Γ(x) =
∞∏
n=1

(1+ 1
n)

x

(1+ x
n)

1
x
. q-деформированная гамма-функция:Γq(x) =

(1− q)1−x (q;q)∞
(qx;q)∞

.

Γq(x+1) = (q;q)∞
(qx+1;q)∞

(1−q)−x =
∞∏
n=1

1−qn
1−qn+x (1−q)−x =

∞∏
n=1

(1−qn)(1−qn+1)x

(1−qn+x)(1−qn)x
=
∞∏
n=1

(−hn)(−h(n+1))x

(−h(n+x))(−hn)x
=

∞∏
n=1

(
n

n+x

) (
1 + 1

n

)x
=

(
∞∏
n=1

(1+ 1
n)

x

(1+ x
n)

1
x

)
x = xΓ(x) = Γ(x+ 1)

Отсюда получаем нужное нам выражение для Гамма-предела(см.[3]):

lim
q→1

(qx; q)∞
(q; q)∞

= (−~)1−x 1

Γ(x)
. (2)

Соответственно,сами xi преобразуется следующим образом:
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xi = qwi = e~wi , q = e~, xi = 1− (1− xi) = 1− (xi; q)1 = 1− (xi;q)∞
(xiq;q)∞

−→ 1− Γ(wi+1)
Γ(wi)

(−~)1 =

= 1 + ~
Γ(wi + 1)

Γ(wi)
= 1 + ~wi, q = 1 + ~. (3)

Видим,что мы взяли предел правильно,так как наше разложение совпадает с разложением

экспоненты в 1-ом порядке.

Далее,по определению,интегрирование в q-анализе выполняется следующим образом(см.[9]):

a∫
0

f(x)dqx = (1− q)a
∞∑
j=0

qjf(qja) (4)

Это определение видоизменяется при переходе к h-анализу (см.[9]),учитывая связь q = eh:

b∫
a

f(x)dhx =


h
(
f(a) + f(a+ h) + · · ·+ f(b− h)

)
, a < b

0, a = b

−h
(
f(b) + f(b+ h) + · · ·+ f(a− h)

)
, a > b

(5)

1∫
0

dqxf(x) = (1−q)
∞∑
j=0

qjf(qj) = (−h)
∞∑
j=0

ehjf(ehj) = (−h)
∞∑
j=0

(1+hj)f(1+hj) =
∞∫
1

dhx(xf(x))

Теперь рассмотрим функцию,схожую по строению с функцией из выражения в исход-

ном случае:

F =
1

x
(qx∂x − 1)f(x) (6)

.Тогда:
1∫
0

dqxF (x) =
∞∫
1

dhx(xF (x)) =
∞∫
1

dhxx
1
x
(qx∂x−1)f(x) =

∞∫
1

dhx(qx∂x−1)f(x) =
∞∫
1

dhx(e∂x−

1)f(x) = (−h)
∞∑
j=0

(e∂x − 1)f(1 + hj) =

= (−h)(f(1 + h)− f(1) + f(1 + 2h)− f(1 + h) + . . . ) = hf(x)|x=1
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Зная,что f(x)|x=1 = 0 или,в переменных w , f(w)|w=0 = 0 получаем,что при переходе

к пределу и смене вида интегрирования выражение при том же условии остаётся равным

0.Это свойство понадобится нам в подразделе 2.3.Если перейти к wi, xi = 1+hwi,получаем

пределы
1∫
∞
dhx =

0∫
∞

(dhw)x.

Вспомним,как преобразуется подынтегральное выражение.В прошлый раз не была

учтена одна деталь,которая будет отмечена ниже.

2.2 Вывод меры интеграла Сельберга

Ещё раз напомним вид среднего в q-случае(см [2]):

〈f(x)〉 =

∫
dNq x

N∏
k=1

(
xuk

ν−1∏
a=0

(qaxk − 1)

)
∆(q,t)f(x)

∫
dNq x

N∏
k=1

(
xuk

ν−1∏
a=0

(qaxk − 1)

)
∆(q,t)

(7)

Преобразования:

ν−1∏
k=0

(qkxi − 1) = (−1)ν
ν−1∏
k=0

(1 − qkxi) = (−1)ν(xi; q)ν = (−1)ν (xi;q)∞
(xiqν ;q)∞

= (−1)ν
(xi;q)∞
(q;q)∞

(xiq
ν ;q)∞

(q;q)∞

=

(−1)ν
(qwi ;q)∞

(q;q)∞
(qwi+ν ;q)∞

(q;q)∞

−→ (−1)ν(−~)1−wi 1
Γ(wi)

(−~)wi+ν−1 1
Γ(wi+ν)

= (~)ν Γ(wi+ν)
Γ(wi)

.

∆(q,t)(x) =
β−1∏
k=0

∏
i 6=j

(xi − qkxj) =
∏
i 6=j

xβi
β−1∏
k=0

(1 − qk
xj
xi

) =
∏
i 6=j

xβi (
xj
xi

; q)β =
∏
i 6=j

xβi
(
xj
xi

;q)∞

(qβ
xj
xi

;q)∞
=

∏
i 6=j

xβi
(qwj−wi ;q)∞

(qβ+wj−wi ;q)∞
=
∏
i 6=j

xβi

(q
wj−wi ;q)∞

(q;q)∞
(q
β+wj−wi ;q)∞

(q;q)∞

−→
∏
i 6=j

xβi (−~)1+wi−wj 1
Γ(wj−wi)(−~)−1−wi+wj+β∗

∗Γ(β + wj − wi) = (−~)β
∏
i 6=j

xβi
Γ(β+wj−wi)

Γ(wj−wi) .

Со степенями xui есть 2 варианта:

1. u ∼ 1 при q → 1

Тогда
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xi −→ 1 + hwi,
N∏
i=1

xi −→ 1 + h

(
N∑
i=1

xi

)
= 1 + hp1,

N∏
i=1

xui −→ 1 + hup1.

2. u = a
~ при q → 1

(1 + ~wi)
a
~ = (1 + awi

1
~

)
a
~ = eawi .

Соответственно:
N∏
i=1

xui −→
N∏
i=1

eawi .

Рассмотрим выражение:

(−~)β
∏
i 6=j

xβi
Γ(β+wj−wi)

Γ(wj−wi) .

Каждая переменная xβi входит в это выражение N − 1 раз,так как присутствует про-

изведение i, j с каждым j,не равным i.Таким образом:

(−~)β
N∏
i=1

x
(N−1)β
i

∏
i 6=j

Γ(β+wj−wi)
Γ(wj−wi) .

Таким образом,для среднего от функции,опуская нормировку и все внешние степени

~,имеем:

• 〈f(x)〉 =
∞∫
0

dNw
N∏
i=1

xi
N∏
i=1

eawi Γ(wi+ν)
Γ(wi)

N∏
i=1

x
(N−1)β
i

∏
i 6=j

Γ(β+wj−wi)
Γ(wj−wi) f(w) =

=

∞∫
0

dNw(1 + h((N − 1)β + 1)p1)
N∏
i=1

eawi
Γ(wi + ν)

Γ(wi)

∏
i 6=j

Γ(β + wj − wi)
Γ(wj − wi)

f(w). (8)

• 〈f(x)〉 =
∞∫
0

dNw
N∏
i=1

xi(1 + hup1)Γ(wi+ν)
Γ(wi)

N∏
i=1

x
(N−1)β
i

∏
i 6=j

Γ(β+wj−wi)
Γ(wj−wi) f(w) =

=

∞∫
0

dNw(1 + h(u+ 1 + β(N − 1))p1)
Γ(wi + ν)

Γ(wi)

∏
i 6=j

Γ(β + wj − wi)
Γ(wj − wi)

f(w). (9)

В дальнейшем будем рассматривать только 1-ый случай,2-ой случай рассматривается

аналогично.
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2.3 Вывод петлевых уравнений

Перейдём к выводу петлевых уравнений.Исходная формула для q-случая выглядит

следующим образом(см.[2]):

∫
dNq x

N∑
i=1

1

xi
(qxi∂xi − 1)xi

[
xi − q
z − xi

∏
i 6=j

xi − txj
xi − xj

N∏
k=1

(
xuk

v−1∏
a=0

(qaxk − 1)

)
∆(q,t)(x)f(x)

]
= 0. (10)

Переходя к пределу:

xi = 1 + ~wi, t = qβ = e~β = 1 + ~β, xi − txj = 1 + ~wi − (1 + ~β)(1 + ~wj) = ~(wi − wj +

β)− ~2wjβ, xi − xj = ~(wi − wj),

xi−txj
xi−xj −→

wi−wj−β
wi−wj , qxi∂xi −→ e∂wi .

Преобразуем также:

xi−q
z−xi = e~wi−e~

e~y−e~ −→
~(wi−1)
~(y−wi) = wi−1

y−wi

Исходная формула имеет тогда вид(опуская внешние множители (~)A):∫
dNw

N∑
m=1

(e∂wm−1)
(
wm−1
y−wm

) ∏
m 6=n

wm−wn−β
wm−wn (1+h((N−1)β+1)p1)

N∏
i=1

eawi Γ(wi+ν)
Γ(wi)

∏
i 6=j

Γ(β+wj−wi)
Γ(wj−wi) f(w)

= 0.

Рассмотрим действие оператора e∂wi .

e∂wif(wi) = f(wi + 1). Соответственно действие оператора на множители,входящие в

формулу:

e∂wm∆(Γ)(w) =
∏
m 6=j

(β+wm−wj)(wj−wm−1)

(wm−wj)(β+wj−wm−1)
∆(Γ)(w)
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,

e∂wm
∏
m 6=n

wm−wn−β
wm−wn =

∏
m 6=n

wm−wn−β+1
wm−wn+1

,

e∂wm
N∏
k=1

Γ(wk+ν)
Γ(wk)

=
N∏

k=1,k 6=m

Γ(wk+ν)
Γ(wk)

Γ(wm+ν+1)
Γ(wm+1)

= wm+ν
wm

N∏
k=1

Γ(wk+ν)
Γ(wk)

,

e∂wm
N∏
k=1

eawk = ea(wm+1)
N∏

k=1,k 6=m
ewk = ea

N∏
k=1

ewk

e∂wm (1 + hAp1) = e∂wm (1 + hA

(
N∑
i=1

xi

)
) = (1 + hA

(
N∑
i=1

xi

)
+ hA)

Учитывая,что разложение по h проводится до 1-ого порядка:

1+hA
1+hB

= (1 + h (A−B))

Собирая воедино:

e∂wm
(
wm−1
y−wm

) ∏
m 6=n

wm−wn−β
wm−wn (1 + h(1 + β(N − 1))p1)

N∏
k=1

eawk Γ(wk+ν)
Γ(wk)

∏
i 6=j

Γ(β+wj−wi)
Γ(wj−wi) f(w) =(

wm
y−wm−1

) ∏
m 6=n

wm−wn−β+1
wm−wn+1

ea wm+ν
wm

(1 + h(1 + β(N − 1))p1 + h(1 + β(N − 1))) ∗

∗
(

N∏
k=1

eawk Γ(wk+ν)
Γ(wk)

) ∏
m 6=j

(β+wm−wj)(wj−wm−1)

(wm−wj)(β+wj−wm−1)
.

∆(Γ)(w)f(wj 6=m, wm + 1) = ea
(

wm+ν
y−wm−1

)( ∏
m 6=n

β+wm−wn
wm−wn

)
f(wj 6=m, wm + 1)∗

∗ (1 + h(1 + β(N − 1))p1 + h(1 + β(N − 1)))

(
N∏
k=1

eawk Γ(wk+ν)
Γ(wk)

∆(Γ)(w)

)
.

Соответственно:

∫
dNw

N∑
m=1

(e∂wm − 1)
(
wm−1
y−wm

)
(1 + h(1 + β(N − 1))p1 + h(1 + β(N − 1)))

∏
m 6=n

wm−wn−β
wm−wn ∗

N∏
k=1

eawk Γ(wk+ν)
Γ(wk)

∏
i 6=j

Γ(β+wj−wi)
Γ(wj−wi) f(w) =

∫
dNw

N∑
m=1

(
ea (1 + h(1 + β(N − 1))) wm+ν

y−wm−1
∗
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∗ f(wj 6=m, wm + 1)
∏
m6=n

β+wm−wn
wm−wn −

wm−1
y−wmf(w)

∏
m6=n

wm−wn−β
wm−wn

)
∗

∗
(

(1 + h(1 + β(N − 1))p1)
N∏
k=1

eawk Γ(wk+ν)
Γ(wk)

∆(Γ)(w)

)
.

Таким образом,опуская меру интегрирования,получаем вид,аналогичный q-случаю :〈
N∑
m=1

[
ea (1 + h(1 + β(N − 1))) wm+ν

y−wm−1
f(wj 6=m, wm + 1)

∏
m6=n

β+wm−wn
wm−wn −

−wm−1
y−wmf(w)

∏
m6=n

wm−wn−β
wm−wn

]〉
= 0.

Перепишем данное уравнение в виде контурного интеграла,охватывающего все точки

wm:

〈∮
Cx

dξ

[
ea (1 + h(1 + β(N − 1))) ξ+ν

y−ξ−1
e∂wmf(pn)

N∏
j=1

ξ−wj+β
ξ−wj + ξ−1

y−ξf(pn)
N∏
j=1

ξ−wj−β
ξ−wj

]〉
= 0

Рассмотрим действие оператора e∂wm на функции симметрических полиномов pn:

e∂wmpn = e∂wm
N∑
j=1

wnj = pn + (wm + 1)n − wnm =⇒ e∂wmpn = f(pn + (ξ + 1)n − ξn)

В данном контурном интеграле имеется два полюса первого порядка ξ = y − 1, ξ = y.

Выразим также произведения
N∏
j=1

ξ−wj−β
ξ−wj через симметрические полиномы pn,учитывая

соответствующие подстановки для полюсов:
N∏
j=1

ξ−wj−β
ξ−wj

∣∣∣∣∣
ξ=y

= exp[
N∑
j=1

ln(
y−wj−β
y−wj )] = exp[

N∑
j=1

(ln(1− wj+β

y
)− ln(1− wj

y
))] =

= exp[
N∑
j=1

(−1)
∑
n>0

1
nyn

((wj + β)n − wnj )] = exp[(−1)
∑
n>0

1
nyn

(
n−1∑
l=0

plC
l
nβ

n−l)].

Аналогично:
N∏
j=1

ξ−wj+β
ξ−wj

∣∣∣∣∣
ξ=y−1

= exp[
N∑
j=1

ln(
y−1−wj+β
y−wj−1

)] = exp[
N∑
j=1

(ln(1− wj−β+1

y
)− ln(1− wj+1

y
))] =

= exp[
N∑
j=1

(−1)
∑
n>0

1
nyn

((wj − β)n − (wj + 1)n)] = exp[(−1)
∑
n>0

1
nyn

(
n−1∑
l=0

plC
l
n((1− β)n−l − 1))]

9



Также,для полюса ξ = y − 1 перепишем:

(ξ + 1)n − ξn = yn − (y − 1)n = −
n−1∑
l=0

yl(−1)n−lC l
n =

n−1∑
l=0

yl(−1)n−l+1C l
n (11)

Суммируя всё вышеописанное,получаем итоговый вид петлевых уравнений:

ξ = y−1 : ea(y+ν−1)〈f(pn+
n−1∑
l=0

yl(−1)n−l+1C l
n)exp[−

∑
n>0

1
nyn

(
n−1∑
l=0

plC
l
n((1−β)n−l−1))]〉+

ξ = y : +(y − 1)〈f(pn)exp[−
∑
n>0

n−1∑
l=0

1

nyn
C l
nplβ

n−l]〉 = 0. (12)

На самом деле это не все полюса–есть ещё полюс в бесконечности.Вычислив его най-

дём,что полоюс в бесконечности сокращает все положительные степени по y,возникающие

при разложении членов у полюсов y−1, y и поэтому ниже мы можем сразу рассматривать

только отрицательные степени по y,помня об этом факте.

2.4 Решение петлевых уравнений

Продемонстрируем методику получения полиномиальных средних на примере 2-ух пер-

вых уровней–величины 〈p1〉, 〈p2〉, 〈p2
1〉.Сами уравнения будут получаться из рассмотрения

ряда Лорана,получающегося из разложения экспоненты по отрицательным y,при отбра-

сывании неотрицательных степеней путём приравнивания всех коэффициентов при отри-

цательных степенях y нулю.

Продемонстрируем:

f(pn) = 1.

ea(y+ν−1)〈exp[−( 1
y
(−Nβ)+ 1

2y2 (N(β2−2β)−2βp1)+ 1
3y3 (N(β−2)(β+(β−1)2)+3p1β(β−

2)− 3p2β))]〉+ (y − 1)〈exp[−( 1
y
(Nβ) + 1

2y2 (Nβ2 + 2βp1) + 1
3y3 (Nβ3 + 3p1β

2 + 3p2β))]〉 = 0.

Разлагая экспоненту,получаем:
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ea(y+ν−1)(1+ 1
y
(Nβ)+ 1

2y2 (2β〈p1〉−N(β2−2β)+N2β2)+ 1
3y3 (3〈p2〉β−N(β−2)(β+(β−

1)2)− 3〈p1〉β(β− 2) + 1
2
N3β3 + 3

2
Nβ(2β〈p1〉−Nβ(β− 2)))) + (y− 1)(1− 1

y
(Nβ) + 1

2y2 (N2β2−

Nβ2 − 2β〈p1〉) + 1
3y3 (−(Nβ3 + 3〈p1〉β2 + 3〈p2〉β)− 1

2
(N3β3) + 3

2
Nβ(Nβ2 + 2β〈p1〉)))) = 0.(

Приравнивая нулю коэффициенты при 1
y
и 1

y2 cоответственно получаем следующие

уравнения:

〈p1〉β(ea − 1) +Nβ(1 + ea(ν − 1) + 1
2
ea(Nβ − β + 2) + 1

2
β(N − 1)) = 0

β(ea−1)〈p2〉+ 〈p1〉(ea(Nβ−β+ 2) +β(N −1) + ea(ν−1) + 1) + (1
2
Nβ(ea(ν−1)(Nβ−β+ 2)−

β(N − 1)) + 1
3
N(ea(1

2
N2β3− (β− 2)(β+ (β− 1)2)− 3

2
Nβ2(β− 2))− 1

2
Nβ3(N − 1)(N − 2))) = 0

Здесь h уже положено равным 0.Случай для h 6= 0 получается простой заменой ea на

ea(1+h(1+β(N −1))).В u−случае ea надо заменить на (1+h(u+1+(N −1)β)).Уравнение

на 〈p2
1〉 получается,если положить f(pn) = p1.Соответственно f(pn +

n−1∑
l=0

yl(−1)n−l+1C l
n) =

p1 + 1.Подставляя эту функцию в петлевые уравнения и приравнивая нулю коэффициент

при 1
y
получаем следующее уравнение:

β(ea − 1)〈p2
1〉+ 〈p1〉(Nβ(ea(ν − 1) + 1) + 1

2
(N2β2 −Nβ2 + ea(N2β2 −Nβ2 + 2β(N + 1)))) +

eaNβ(ν − 1) +Nβ(Nβ − β + 2) = 0

Получаем следующие ответы:

〈p1〉 = −N(Nβ−β−βea+2νea+Nβea+2)
(2(ea−1))

〈p2〉 = N
6(ea−1)2 (6ea−6β+6Nβ+b2e2a+6ν2e2a−3Nβ2−18βea+18νea+β2 +2N2β2 +10β2ea−

18Nβ2ea−6βνe2a−3Nβ2e2a+8N2β2ea+18Nβea+2N2β2e2a−12βνea+12Nβνea+6Nβνe2a+6)

〈p2
1〉 = N

4(ea−1)2 (4N + 4ea − 4Nβ +Nβ2 + 4N2β − 4βea + 4νea − 2N2β2 +N3β2 + 2Nβ2ea +

4N2βea +Nβ2e2a − 4N2β2ea + 2N3β2ea + 4Nν2e2a + 8Nνea − 2N2β2e2a +N3β2e2a +

4N2βνe2a − 4Nβνea − 4Nβνe2a + 4N2β2νea)
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2.5 Проверка и интересные наблюдения

В итоге после проверки на самосогласованность переопределённой системы уравне-

ний,результаты сходятся на 3-ем уровне системы,что означает,что некоторые уравнения

тривиальны,а система непротиворечива.Дополнительным источником доверия может слу-

жить тот факт,что было подсчитано значение среднего 〈p1〉 в случае одной переменной,а

именно,c помощью компьютерного символьного вычисления был подсчитан ряд,который

по определению и является h-интеграл:

〈f〉 =

∞∑
k=0

(1+hk)eak
Γ(k+ν)

Γ(k)
f(k)

∞∑
k=0

(1+hk)eak
Γ(k+ν)

Γ(k)

Подставляя сюда f(k) = p1 = k получаем величину,совпадающую с выражением для

〈p1(w)〉,полученным из уравнений,причём результат сходится даже при h 6= 0 в первом

порядке разложения по h.Дополнительно здесь есть 3 любопытных момента:

1. В случае,когда u ∼ 1,который можно назвать u-случаем,величины для полиноми-

альных средних будут иметь вид,пропорциональный 1
h
,что является необычным и не

совсем пока понятным результатом.Вычисления с помощью взятия ряда также дают

расходящийся ответ.

2. Интересно то,что для взятия среднего по определению для получения правильного

ответа нужно сначала посчитать ряд,а лишь потом устремить h к нулю.Если же

сначала устремить h к нулю,а затем взять уже интеграл,то ответ будет другим,что

интересно,так как ряд представляет собой всего лишь риманову сумму.

3. Может возникнуть определённое сомнение в том,что петлевые уравнения вообще

необходимы,так как любое среднее можно посчитать по определению,однако даже

подсчёт полиномов 2-ого порядка путём подсчёта ряда(то есть по определению) с

помощью компьютерного символьного вычисления не дало результатов,так как за-

няло очень много времени,при этом не закончив подсчёт.
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3 Предел симметрических полиномов Макдональда

Рассмотрим полиномы Макдональда.Их средние выражаются через параметры q =

eh, t = ehβ, u = a
h
, а параметры ν,N остаются неизменными.Попробуем разложить средние

от полиномов по h,а затем сравнить полученные выражения с полученными путём перевы-

ражения симметрических полиномов в переменных x через переменные в переменных w,а

также не забыть о поправках к мере h-усреднения,которые.как мы увидим,также играет

роль.

Начнём с M[1],[] = p1(x).Согласно общей формуле(см.[2])(для диаграмм Юнга исполь-

зована французская нотация):

〈MY (pn)〉 =
∏

(i,j)∈Y

qti−1(1− tN−i+1qj−1)(1− qu+jtN−i)

(1− tY Tj −i+1qYi−j)(1− qu+ν+j+1t2N−i−1)
(13)

В переменных w: p1(x) =
N∑
i=1

xi =
N∑
i=1

(ehwi) =(до 1-ого порядка по h)=
N∑
i=1

(1 + hwi) =

N + hp1(w). Среднее для M[1],[]:

〈M[1],[]〉 = 〈p1(x)〉 =
q(tN − 1)(tN−1qu+1 − 1)

(t− 1)(t2N−2qu+ν+2 − 1)
. (14)

Раскладывая это выражение по h приходим к выражению:

〈M[1][]〉 = N + h(−N(eaν + 1 + 1/2(ea + 1)β(N − 1))

ea − 1
) (15)

Вспоминая выражение для p1,понимаем,что данное разложение полностью соответ-

ствует разложению p1(x) = N + hp1(w).

Попробуем сделать то же для 2-ого уровня.Возьмём наиболее простой из полиномов

Макдональда –M[1,1][] = 1
2
(p2

1 − p2).Аналогичным образом разложим p2(x), p2
1(x) по w:

p2(x) =
N∑
i=1

x2
i =

N∑
i=1

e2hwi =
N∑
i=1

(1 + 2hwi + 1
2
(2hwi)

2) = N + 2hp1(w) + 2h2p2(w),
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p2
1(x) =

(
N∑
i=1

xi

)2

=

(
N∑
i=1

1 + hwi + (hwi)
2

2

)2

=
(
N + hp1(w) + h2p2(w)

2

)2

= N2+2Nhp1(w)+

h2(p2
1 +Np2).

〈M[1,1][]〉 =
q2t(tN − 1)(eaqtN−1 − 1)(tN−1 − 1)(eaqtN−2 − 1)

(t2 − 1)(eaqv+2t2N−2 − 1)(t− 1)(eaqv+2t2N−3 − 1)
(16)

Где мы подставили qu = (eh)
a
h = ea.Разложим q-среднее M[1,1][] по h до 2-ого порядка.С

другой стороны подставим вышенаписанные разложения p2
1(x), p2(x) по w.

〈M[1,1][]〉 = 〈1
2
(p2

1(x)−p2(x))〉 = 1
2
(N(N−1)+2h(N−1)〈p1(w)〉+h2(〈p2

1(w)〉+ 〈p2(w)〉(N−

2))).

Подставляя результат для средних 〈p1(w)〉, 〈p2
1(w)〉, 〈p2(w)〉 получаем,что в 0-ом и 1-ом

порядке по h результат сходится с разложением q-среднего,а во 2-ом порядке нет.

Попытаемся решить эту проблему,учитывая поправки к мере,по которой берётся усред-

нение.Разделим вклады в мере следующим образом:

〈p2(x)〉 =
〈(N + 2hp1(w) + 2h2p2(w))(1 + hA+ 1

2
h2B)〉

〈(1 + hA+ 1
2
h2B)〉

(17)

Аналогично для p2
1(w):

〈p2
1(x)〉 =

〈(N2 + 2hNp1(w) + h2(p2
1 +Np2(w)))(1 + hA+ 1

2
h2B)〉

〈(1 + hA+ 1
2
h2B)〉

(18)

Раскладывая по h до 2-ого порядка находим,что:

〈p2(x)〉 = (N+h(2〈p1(w)〉+N〈A〉)+h2(2〈p2(w)〉+ N〈B〉
2

+2〈p1(w)A〉))(1−h〈A〉+h2(〈A〉2−
〈B〉
2

)) = N + 2hp1(w) + h2(2〈p2(w)〉+ 2〈p1(w)A〉 − 2〈A〉〈p1(w)〉).

Видим,что 2-ого порядка поправок по мере не требуется,что облегчает задачу по их

вычислению.Аналогично для p2
1(x) :

〈p2
1(x)〉 = N2 + 2hN〈p1(w)〉+ h2(〈p2

1(w)〉+N〈p2(w)〉+ 2N〈p1(w)A〉 − 2N〈p1(w)〉〈A〉). (19)
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Перейдём теперь к структуре поправок к мере.Вспомним исходное выражение:

〈f(x)〉 =

∫
dNq x

N∏
k=1

(
xuk

ν−1∏
a=0

(qaxk − 1)

)
∆(q,t)f(x)

∫
dNq x

N∏
k=1

(
xuk

ν−1∏
a=0

(qaxk − 1)

)
∆(q,t)

(20)

•
∫
dNq x −→

∫
dNh w

N∏
i=1

xi.

•
N∏
i=1

ν−1∏
k=0

(qkxi−1) =
N∏
i=1

ν−1∏
k=0

(1+h(k+wi)+ h2

2
(k+wi)

2−1) =
N∏
i=1

ν−1∏
k=0

h(k+wi)(1+ h
2
(k+wi)) =

N∏
i=1

hν
ν−1∏
k=0

(k+wi)
ν−1∏
k=0

(1 + h
2
(k+wi)) =

N∏
i=1

hν
ν−1∏
k=0

(k+wi)
N∏
i=1

ν−1∏
k=0

(1 + h
2
(k+wi)) =(мера без

поправок)
N∏
i=1

ν−1∏
k=0

(1 + h
2
(k +wi)) =(мера без поправок)

N∏
i=1

ν−1∏
k=0

(1 + h
2
wi + h

2
k) =(мера без

поправок)
N∏
i=1

(1 + h
2
νwi + h

2
ν(ν−1)

2
) =(мера без поправок)(1 + h

2
νp1(w) + h

2
N ν(ν−1)

2
)

• ∆(q,t)(x) =
∏
i 6=j

β−1∏
k=0

(xi−qkxj) =
∏
i 6=j

xβi
∏
i 6=j

β−1∏
k=0

(1−qk xj
xi

) =
N∏
i=1

x
(N−1)β
i

∏
i 6=j

β−1∏
k=0

(1−eh(k+wj−wi)) =

N∏
i=1

x
(N−1)β
i

∏
i 6=j

β−1∏
k=0

(−h)(k+wj−wi)(1+h
2
(k+wj−wi)) =

N∏
i=1

x
(N−1)β
i (мера без поправок)

∏
i 6=j

β−1∏
k=0

(1+

h
2
(k + wj − wi)) =

N∏
i=1

x
(N−1)β
i (мера без поправок)

∏
i 6=j

(1 + h
2
β(wj − wi) + h

2
β(β−1)

2
) =

N∏
i=1

x
(N−1)β
i (мера без поправок)(1 + h

2
N(N − 1)β(β−1)

2
).

•
N∏
i=1

xui =
N∏
i=1

eawi .

Собирая всё вместе находим поправку:

1 + hA = 1 + h
(
p1(w)(β(N − 1) + 1 + ν

2
) + 1

4
(ν(ν − 1)N +N(N − 1)β(β − 1))

)
,откуда и

находим A.

A = p1(w)(β(N − 1) + 1 +
ν

2
) +

1

4
(ν(ν − 1)N +N(N − 1)β(β − 1)). (21)

15



Поправка A имеет вид A = C1p1(w) + C2.Рассмотрим это поподробнее: 〈Ap1(w)〉 −

〈A〉〈p1(w)〉 = 〈(C1p1(w) + C2)p1(w)〉 − 〈C1p1(w) + C2〉〈p1(w)〉 = C1(〈p2
1(w)〉 − (〈p1(w)〉)2) +

C2(〈p1(w)〉 − 〈p1(w)〉) = C1(〈p2
1(w)〉 − (〈p1(w)〉)2).

Собирая всё вместе,получаем итоговое разложение M[1,1][] через полиномы от w:

〈M[1,1][]〉 = 1
2
(〈p2

1(x)〉 − 〈p2(x)〉) = 1
2
(N(N − 1) + 2h〈p1(w)〉(N − 1) + h2(〈p2

1(w)〉 + (N −

2)〈p2(w)〉+ (N − 1)(2(β(N − 1) + 1) + ν)(〈p2
1(w)〉 − (〈p1(w)〉)2))).

Подставляя выражения для 〈p1(w)〉, 〈p2(w)〉, 〈p2
1(w)〉 из уравнений получаем соответ-

ствие в 0-ом,1-ом и 2-ом порядках.

4 Вывод собственных функций рационильной модели

Рудженаарса-Шнейдера

4.1 Первый подход

Рассмотрим теперь вопрос о собственных функциях гамильтониана рационального

Рудженаарса.Гамильтониан имеет вид(см.[4]):

HrR =
N∑
i=1

∏
k 6=i

wi − wk + β

wi − wk
e∂wi (22)

Выделим в гамильтониане операторы Ôi =
∏
k 6=i

wi−wk+β
wi−wk

e∂wi .Введём функции Γi =
∏
k 6=i

Γ(wi−wk)
wi−wk+β

.

Как действуют операторы Ôi на Γi?Оператор экспоненты действует так:

• e∂wiΓi = e∂wi
∏
k 6=i

Γ(wi−wk)
Γ(wi−wk+β)

=
∏
k 6=i

Γ(wi−wk+1)
Γ(wi−wk+β+1)

=
∏
k 6=i

wi−wk
wi−wk+β

∏
k 6=i

Γ(wi−wk)
Γ(wi−wk+β)

• (i 6= j) : e∂wjΓi = e∂wj
∏
k 6=i

Γ(wi−wk)
Γ(wi−wk+β)

=
Γ(wi−wj−1)

Γ(wi−wj+β−1)

∏
k 6=i,k 6=j

Γ(wi−wk)
Γ(wi−wk+β)

=

(wi−wj+β−1)

(wi−wj−1)

Γ(wi−wj)
Γ(wi−wj+β)

∏
k 6=i,k 6=j

Γ(wi−wk)
Γ(wi−wk+β)

=
(wi−wj+β−1)

(wi−wj−1)

∏
k 6=i,k 6=j

Γ(wi−wk)
Γ(wi−wk+β)

=
(wi−wj+β−1)

(wi−wj−1)
Γi.
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Соответственно для оператора Ôi имеем:

• ÔiΓi =
∏
k 6=i

wi−wk+β
wi−wk

e∂wiΓi =
∏
k 6=i

wi−wk+β
wi−wk

∏
k 6=i

wi−wk
wi−wk+β

∏
k 6=i

Γ(wi−wk)
Γ(wi−wk+β)

=
∏
k 6=i

Γ(wi−wk)
Γ(wi−wk+β)

= Γi.

• (i 6= j) : ÔjΓi =
∏
k 6=j

wj−wk+β

wj−wk
e∂wjΓi =

(wi−wj+β−1)

(wi−wj−1)

∏
k 6=j

wj−wk+β

wj−wk
Γi.

Гамильтониан можно тогда выразить в виде HrR =
N∑
i=1

Ôi.

Попробуем сумму или произведение величин Γi в качестве собственной функции.

•
N∑
i=1

ÔiΓj = Γj +
∑
i 6=j

(∏
k 6=i

wi−wk+β
wi−wk

)
wj−wi+β−1

wj−wi−1
Γj.

N∑
i=1

Ôi

N∑
j=1

Γj =
N∑
j=1

Γj +
N∑
j=1

Γj

(∑
i 6=j

(∏
k 6=i

wi−wk+β
wi−wk

)
wj−wi+β−1

wj−wi−1

)

•
N∑
i=1

Ôi

N∏
j=1

Γj =
N∑
i=1

ÔiΓi
N∏
j 6=i

Γj =
N∑
i=1

Γi
N∏
j 6=i

e∂wiΓj =
N∑
i=1

Γi
N∏
j 6=i

(wj−wi+β−1)

(wj−wi−1)
Γj =

=
N∑
i=1

Γi
N∏
j 6=i

(wj−wi+β−1)

(wj−wi−1)

N∏
j 6=i

Γj =

(
N∑
i=1

N∏
j=1

Γj

)
N∑
i=1

N∏
j 6=i

(wj−wi+β−1)

(wj−wi−1)

Можно проверить,что соответствующие выражения

(∑
i 6=j

(∏
k 6=i

wi−wk+β
wi−wk

)
wj−wi+β−1

wj−wi−1

)
и

N∑
i=1

N∏
j 6=i

(wj−wi+β−1)

(wj−wi−1)
не сводятся к постоянной величине,поэтому сумма и произведение Γi

cобственными функциями не являются.Было проверено ещё несколько вариантов комби-

наций,симметричных по w1, . . . , wN и составленных из комбинаций Γi,но ни одна из них

не является собственной функцией.

4.2 Второй подход

Пока у нас не получилось построить собственную функцию для гамильтонианаHrR.Однако

в действительности можно указать целый класс функций,каждая из которых будет яв-

ляться собственной.Для того,чтобы это показать,докажем одно небольшое утверждение.
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Лемма:
N∑
i=1

∏
k 6=i

wi − wk + α

wi − wk
= N. (23)

Доказательство:Расположим точки w1, ..., wN на комплексной плоскости.Окружим

их контуром Cw.Тогда можем записать:
N∑
i=1

∏
k 6=i

wi−wk+α
wi−wk

= 1
2πiα

∮
Cw

N∏
j=1

z−wj+α
z−wj .Действительно,каждый полюс имеет 1-ый порядок,а

всего полюсов N .Беря вычеты во всех полюсах получаем исходное выражение.Далее,из

основной теоремы теории вычетов следует,что: 1
2πiα

∮
Cw

N∏
j=1

z−wj+α
z−wj = − 1

2πiα

∮
C∞

N∏
j=1

z−wj+α
z−wj .

1
2πiα

∮
C∞

N∏
j=1

z−wj+α
z−wj = 1

α
Res

[
N∏
j=1

z−wj+α
z−wj , z =∞

]
=(замена переменных z = 1

η
)

= − 1
α
Res

[
1
η2

N∏
j=1

1
η
−wj+α
1
η
−wj

, η = 0

]
= −

(
N∏
j=1

(wj−α)η−1

wjη−1

)′∣∣∣∣∣
η=0

= − 1
α

N∑
j=1

(∏
i 6=j

(wi−α)η−1
wjη−1

)
α

(wjη−1)2

∣∣∣∣∣
η=0

= −αN
α

= −N.Вспоминая про ещё один знак минус находим,что лемма доказана.

Таким образом,если для любого оператора e∂wi функция будет собственной,то она будет

собственной и для всего HrR.Так как для любой i действие оператора должно быть одина-

ково,то функция симметрична.Из условия f(wi+1) = f(wi) следует периодичность.Общий

класс функций,как уже было сказано,являющихся собственными для HrR это класс функ-

ций,являющихся собственными для любого из операторов e∂wi с одинаковыми собственны-

ми значениями,явно выражаемым подклассом этого класса являются все симметрические

периодические функции.

Для нахождения собственных функций не из множества симметрических и периодиче-

ских и даже не симметрических функций,воспользуемся небольшой подсказкой,которую

извлечём из работы [1912.09969].Возьмём из этой работы выражение для "нетривиаль-

ной"собственной функции в случае 2-ух переменных:
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ψ(w1, w2|z1, z2) = zw1+w2
2

(
z1

z2

)w1 Γ(w1 − w2)

Γ(w1 − w2 + β)
2F1(

ε+
ε1
,
ε+ + w1 − w2

ε1
;
ε1 + w1 − w2

ε1
|z2

z1

)

(24)

Сделаем упрощение,положив z1 = z2.Рассмотрим теперь нетривиальную часть ψ,а

именно 2F1,так как дробь с Гамма-функциями уже является тем,что нам нужно.Сравнивая

вид Гамильтониана с тем,что дан в работе [4],приходим к выводу,что ε1 = −1, ε+ =

β − 1.Итак:

2F1(1− β, w2 − w1 + 1− β;w2 − w1 + 1|1) = Γ(w2−w1+1)
Γ(w2−w1+β)

∗(константа).

Здесь мы использовали известную упрощающую формулу 2F1(a, b; c|1) = Γ(c)Γ(c−a−b)
Γ(c−a)Γ(c−b) ,которую

можно посмотреть например в [5] (1.2.11).з вышенаписанного можно,опуская константные

факторы,сформировать кандидата в несимметричные собственные функции:

K2 =
Γ(w1 − w2)Γ(w2 − w1 + 1)

Γ(w1 − w2 + β)Γ(w2 − w1 + β)
(25)

Проверим,является ли эта функция собственной для гамильтониана HrR от двух перемен-

ных.

HrR(w1, w2)K2 = w1−w2+β
w1−w2

e∂w1

(
Γ(w1−w2)Γ(w2−w1+1)

Γ(w1−w2+β)Γ(w2−w1+β)

)
+w2−w1+β

w2−w1
e∂w2

(
Γ(w1−w2)Γ(w2−w1+1)

Γ(w1−w2+β)Γ(w2−w1+β)

)
=

w1−w2+β
w1−w2

w1−w2

w1−w2+β
Γ(w1−w2)

Γ(w1−w2+β)
Γ(w2−w1)

Γ(w2−w1+β)
w2−w1+β−1

w2−w1
+w2−w1+β

w2−w1

Γ(w1−w2)
Γ(w1−w2+β)

w1−w2+β−1
w1−w2−1

Γ(w2−w1+1)
Γ(w2−w1+β)

w2−w1+1
w2−w1+β

=

K2

(
w2−w1+β−1

w2−w1
+ w2−w1+β−1

w2−w1

)
= 2K2.

То,что нам и было нужно.Обобщим эту функцию на случай произвольного числа N

переменных.

KN =
∏
i<j

Γ(wi − wj)Γ(wj − wi + 1)

Γ(wi − wj + β)Γ(wj − wi + β)
(26)

Для более удобной проверки разделим KN на две части для произвольного i.Пусть w̃ =

(w1, . . . , wi−1, wi+1, . . . , wN).Тогда KN(w) = K̃N(w̃)KN,i(w̃, wi).

KN,i =
∏
k<i

Γ(wk − wi)Γ(wi − wk + 1)

Γ(wk − wi + β)Γ(wi − wk + β)

∏
i<m

Γ(wi − wm)Γ(wm − wi + 1)

Γ(wi − wm + β)Γ(wm − wi + β)
. (27)
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Вспомним операторы Ôi,HrR =
N∑
i=1

Ôi.Рассмотрим действие оператора Ôi на KN,i :

ÔiKN,i =
∏
k 6=i

wi−wk+β
wi−wk

e∂wiKN,i =
∏
k 6=i

wi−wk+β
wi−wk

∏
k<i

Γ(wk−wi)Γ(wi−wk+1)
Γ(wk−wi+β)Γ(wi−wk+β)

(wi−wk+1)(wk−wi+β−1)
(wk−wi−1)(wi−wk+β)∏

i<m

Γ(wi−wm)Γ(wm−wi+1)
Γ(wi−wm+β)Γ(wm−wi+β)

(wi−wm)(wm−wi+β−1)
(wm−wi)(wi−wm+β)

= KN,i

∏
k 6=i

wi−wk+β
wi−wk

∏
k<i

wi−wk+(1−β)
wi−wk+β∏

i<m

wi−wm+(1−β)
wi−wm+β

= KN,i

∏
k 6=i

wi−wk+(1−β)
wi−wk

.

Отсюда действие Ôi на KN : ÔiKN = K̃N ÔiKN,i = KN

∏
k 6=i

wi−wk+α
wi−wk

, где α = 1− β.

Отсюда HrRKN =
N∑
i=1

ÔiKN = KN

N∑
i=1

∏
k 6=i

wi−wk+α
wi−wk

.

Вспоминая доказанную выше лемму приходим к тому,что KN действительно собствен-

ная функция HrR.

HrRKN = NKN . (28)

5 Заключение

В данной работе был продемонстрирован переход к нетривиальному 4d/2d пределу

из 5d/3d случая,считая 5-ое измерение выраженным через S1,с радиусом h,который соб-

ственно мы и устремили к 0.Мы получили меру для интегралов Сельберга,которые ис-

пользуются в записи конформных блоков в представлении Доценко-Фатеева,а затем вы-

вели петлевые уравнения для полиномиальных средних,усреднённых по новой мере,что

позволяет облегчить задачу подсчёта интегралов Сельберга и конформных блоков в дан-

ной теории.Были проведены три проверки правильности этих уравнений и ответов для

них,одна из которых может быть использована для альтернативного получения полино-

миальных средних.Мы разложили средние от полиномов Макдональда по h с одной сто-

роны,а также посчитали разложения полинома Макдональда по новым симметрическим

полиномам от новых переменных и,прировняв два выражения получили аналог петле-

вых уравнений от полинмоиальных средних в новых переменных.Мы использовали эту

конструкцию для проверки петлевых уравнений,но можно использоать и как альтерна-
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тиву петлевым уравнениям.Были исследованы свойства гамильтониана рациональной мо-

дели Рудженаарса-Шнейдера,который является h-пределом гамильтониана тригономет-

рической модели Рудженаарса-Шнейдера,в частности вопрос о его собственных функци-

ях.Было указано на наличие целого класса собственных функций,такой класс является

тривиальным.Вне этого класса путём обобщения результата [4] была построена неполино-

миальная собственная функция.
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